400-650-1086
首页 > 最新资讯 > 企业新闻 > 正文

分析大数据导向 云技术铸就智慧城市

admin 2015-06-02 10:01:18 0

随着云端运算及物联网等科技的不断发展,大数据(Big Data)在智慧城市扮演的角色也越来越重要。但事实上,数据本来就是城市治理非常重要的依据,尤其是与城市安防的相关业务,举凡人口统计、犯罪率、交通流量等数据,政府治理单位本来就会定时蒐集并加以分析,作为施政的参考,如果不能先了解大数据与传统数据的差别,掌握大数据的分析与工具的特性,就算拥有大数据,也可能只是「入宝山空手而回」,无法将数据转换成价值,自然也无法对城市安防产生贡献。

了解大数据才能有效运用

相较於传统数据,大数据至少具有三个差异极大的特性。首先是数据量(Volume),如果换算成数位数据单位,基本单位通常已经是TB、PB等级,不但要考量收集及储存成本,如何迅速传递这麽庞大的数据,也是大数据应用必须思考的重点;其次是时效性(Velocity),即使是这麽大的数据量,仍然要在最短的时间内产生分析结果,如传统的年报统计,往往是在今年收集去年的数据,却在隔年才出版,旷日废时的结果,往往会让数据分析结果失真。

PredPol应用大数据分析技术,预测出犯罪机率高甚至下一次可能发生犯罪情况的区域,并於地图上标示出一块块500平方英尺的区域,供警察参考。

最後也是最大的差别,就是数据的多样性(Variety),传统的数据通常有明确的结构性,选项也比较少,如年龄、性别、等级等,但大数据可能会有各种形式,包括文字、影音、图像、网页等,不但没有明显的结构,而且大数据还常常出现形式交错的现象,如Youtube上的影片除了有点击数外,同时还有留言讨论。

由此可知,传统的数据收集方式,显然已经不能满足城市安防对於大数据的需求,所幸在物联网(Internet of Things;IoT)、云端运算及4G无线宽频等技术的发展下,要取得物与物、物与人、人与人的互联互通数据,技术上已不是问题,但必须得先迅速建构起收集、传递及储存大数据的基础建设,才有可能建立全面感知的能力,成为城市安防决策的最佳後盾。

但只是从感知层获取资讯是不够的,因为想要做好大数据深度分析,就必须要有能力针对复杂且开放式的问题寻找答案,并藉由视觉化分析工具,透过连续性的筛选和抽象化,才能洞悉重要资讯。然而大数据具有的超大量半结构化/非结构化数据的特性,往往会造成传统关联式数据库管理系统(RDBMS)的运作瓶颈,必须要导入全新的大数据分析工具,方能真正灵活运用大数据。

来源:机房监控 机房环境监控 机房监控系统  http://www.create-china.com.cn

售前咨询

专线:刘刚 13911133352

E-mail:112417434@qq.com

北京金恒智能系统工程技术有限责任公司 版权所有 Copyright 2007-2020 by Create-china.com.cn Inc. All rights reserved.

法律声明:未经许可,任何模仿本站模板、转载本站内容等行为者,本站保留追究其法律责任的权利!

电话:86+10-62104277/2248/4249 传真:86+10-62104193-819 京ICP备10010038号-2网站XML

智慧机房

在线体验

CREATE·机房监控 体验端  用户名:Admin    密码:12345 点击体验
在线咨询 电话咨询